by Gauk
Fri, Oct 21, 2016 3:05 AM

Ethanol fuel is ethyl alcohol, the same type of alcohol found in alcoholic beverages, used as fuel.

It is most often used as a motor fuel, mainly as abiofuel additive for gasoline. The first production car running entirely on ethanol was the Fiat 147, introduced in 1978 in Brazil by Fiat. Nowadays, cars are able to run using 100% ethanol fuel or a mix of ethanol and gasoline (aka flex-fuel). It is commonly made from biomass such as corn or sugarcane. 

Ethanol fuel is widely used in Brazil and in the United States, and together both countries were responsible for 87.1% of the world's ethanol fuel production in 2011. Most cars on the road today in the U.S. can run on blends of up to 10% ethanol, and ethanol represented 10% of the U.S. gasoline fuel supply derived from domestic sources in 2011. Since 1976 the Brazilian government has made it mandatory to blend ethanol with gasoline, and since 2007 the legal blend is around 25% ethanol and 75% gasoline (E25). By December 2011 Brazil had a fleet of 14.8 million flex-fuel automobiles and light trucks and 1.5 million flex-fuel motorcycles that regularly use neat ethanol fuel (known as E100).

Bioethanol is a form of quasi-renewable energy that can be produced from agricultural feedstocks. It can be made from very common crops such as hemp,sugarcane, potato, cassava and corn. There has been considerable debate about how useful bioethanol is in replacing gasoline. Concerns about its production and use relate to increased food prices due to the large amount of arable land required for crops, as well as the energy and pollution balance of the whole cycle of ethanol production, especially from corn. Recent developments with cellulosic ethanol production and commercialization may allay some of these concerns.

Cellulosic ethanol offers promise because cellulose fibers, a major and universal component in plant cells walls, can be used to produce ethanol. According to the International Energy Agency, cellulosic ethanol could allow ethanol fuels to play a much bigger role in the future.

Chemistry

 

Structure of ethanol molecule. All bonds are single bonds

During ethanol fermentation, glucose and other sugars in the corn (or sugarcane or other crops) are converted into ethanol and carbon dioxide.

C6H12O6 → 2 C2H5OH+ 2 CO2 + heat

Ethanol fermentation is not 100% selective with other side products such as acetic acid, glycols and many other products produced. They are mostly removed during ethanol purification. Fermentation takes place in an aqueous solution. The resulting solution has an ethanol content of around 15%. Ethanol is subsequently isolated and purified by a combination of adsorption and distillation.

During combustion, ethanol reacts with oxygen to produce carbon dioxide, water, and heat:

C2H5OH + 3 O2 → 2 CO2 + 3 H2O + heat

Starch and cellulose molecules are strings of glucose molecules. It is also possible to generate ethanol out of cellulosic materials. That, however, requires a pretreatment that splits the cellulose into glycose molecules and other sugars that subsequently can be fermented. The resulting product is called cellulosic ethanol, indicating its source.

Ethanol may also be produced industrially from ethylene by hydration of the double bond in the presence of catalysts and high temperature.

C2H4 + H2O → C2H5OH

By far the largest fraction of the global ethanol production, however, is produced by fermentation.

Sources

About 5% of the ethanol produced in the world in 2003 was actually a petroleum product. It is made by the catalytic hydration of ethylene with sulfuric acid as the catalyst. It can also be obtained via ethylene or acetylene, from calcium carbide, coal, oil gas, and other sources. Two million short tons (1,786,000 long tons; 1,814,000 t) of petroleum-derived ethanol are produced annually. The principal suppliers are plants in the United States, Europe, and South Africa. Petroleum derived ethanol (synthetic ethanol) is chemically identical to bio-ethanol and can be differentiated only by radiocarbon dating.

Bio-ethanol is usually obtained from the conversion of carbon-based feedstock. Agricultural feedstocks are considered renewable because they get energy from the sun using photosynthesis, provided that all minerals required for growth (such as nitrogen and phosphorus) are returned to the land. Ethanol can be produced from a variety of feedstocks such as sugar cane, bagasse, miscanthus, sugar beet, sorghum, grain, switchgrass, barley, hemp, kenaf, potatoes, sweet potatoes, cassava, sunflower, fruit, molasses, corn, stover, grain, wheat, straw, cotton, other biomass, as well as many types of cellulose waste and harvesting, whichever has the best well-to-wheel assessment.

An alternative process to produce bio-ethanol from algae is being developed by the company Algenol. Rather than grow algae and then harvest and ferment it, the algae grow in sunlight and produce ethanol directly, which is removed without killing the algae. It is claimed the process can produce 6,000 U.S. gallons per acre (5,000 imperial gallons per acre; 56,000 liters per hectare) per year compared with 400 US gallons per acre (330 imp gal/acre; 3,700 L/ha) for corn production.

Currently, the first generation processes for the production of ethanol from corn use only a small part of the corn plant: the corn kernels are taken from the corn plant and only the starch, which represents about 50% of the dry kernel mass, is transformed into ethanol. Two types of second generation processes are under development. The first type uses enzymes and yeast fermentation to convert the plant cellulose into ethanol while the second type uses pyrolysis to convert the whole plant to either a liquid bio-oil or a syngas. Second generation processes can also be used with plants such as grasses, wood or agricultural waste material such as straw.

Engines

Fuel economy

Ethanol contains approx. 34% less energy per unit volume than gasoline, and therefore in theory, burning pure ethanol in a vehicle reduces miles per US gallon 34%, given the same fuel economy, compared to burning pure gasoline. However, since ethanol has a higher octane rating, the engine can be made more efficient by raising its compression ratio. Using a variable turbocharger, the compression ratio can be optimized for the fuel, making fuel economy almost constant for any blend.

For E10 (10% ethanol and 90% gasoline), the effect is small (~3%) when compared to conventional gasoline, and even smaller (1–2%) when compared to oxygenated and reformulated blends.For E85 (85% ethanol), the effect becomes significant. E85 produces lower mileage than gasoline, and requires more frequent refueling. Actual performance may vary depending on the vehicle. Based on EPA tests for all 2006 E85 models, the average fuel economy for E85 vehicles resulted 25.56% lower than unleaded gasoline. The EPA-rated mileage of current United States flex-fuel vehiclesshould be considered when making price comparisons, but E85 is a high performance fuel, with an octane rating of about 94–96, and should be compared to premium.

Cold start during the winter

High ethanol blends present a problem to achieve enough vapor pressure for the fuel to evaporate and spark the ignition during cold weather (since ethanol tends to increase fuel enthalpy of vaporization). When vapor pressure is below 45 kPa starting a cold engine becomes difficult. To avoid this problem at temperatures below 11 °C (52 °F), and to reduce ethanol higher emissions during cold weather, both the US and the European markets adopted E85 as the maximum blend to be used in their flexible fuel vehicles, and they are optimized to run at such a blend. At places with harsh cold weather, the ethanol blend in the US has a seasonal reduction to E70 for these very cold regions, though it is still sold as E85. At places where temperatures fall below −12 °C (10 °F) during the winter, it is recommended to install an engine heater system, both for gasoline and E85 vehicles. Sweden has a similar seasonal reduction, but the ethanol content in the blend is reduced to E75 during the winter months.

Brazilian flex fuel vehicles can operate with ethanol mixtures up to E100, which is hydrous ethanol (with up to 4% water), which causes vapor pressure to drop faster as compared to E85 vehicles. As a result, Brazilian flex vehicles are built with a small secondary gasoline reservoir located near the engine. During a cold start pure gasoline is injected to avoid starting problems at low temperatures. This provision is particularly necessary for users of Brazil's southern and central regions, where temperatures normally drop below 15 °C (59 °F) during the winter. An improved flex engine generation was launched in 2009 that eliminates the need for the secondary gas storage tank. In March 2009 Volkswagen do Brasil launched the Polo E-Flex, the first Brazilian flex fuel model without an auxiliary tank for cold start.

Fuel mixtures

In many countries cars are mandated to run on mixtures of ethanol. All Brazilian light-duty vehicles are built to operate for an ethanol blend of up to 25% (E25), and since 1993 a federal law requires mixtures between 22% and 25% ethanol, with 25% required as of mid July 2011. In the United States all light-duty vehicles are built to operate normally with an ethanol blend of 10% (E10). At the end of 2010 over 90 percent of all gasoline sold in the U.S. was blended with ethanol. In January 2011 theU.S. Environmental Protection Agency (EPA) issued a waiver to authorize up to 15% of ethanol blended with gasoline (E15) to be sold only for cars and light pickup trucks with a model year of 2001 or newer.

Beginning with the model year 1999, an increasing number of vehicles in the world are manufactured with engines that can run on any fuel from 0% ethanol up to 100% ethanol without modification. Many cars and light trucks (a class containing minivans,SUVs and pickup trucks) are designed to be flexible-fuel vehicles using ethanol blends up to 85% (E85) in North America and Europe, and up to 100% (E100) in Brazil. In older model years, their engine systems contained alcohol sensors in the fuel and/or oxygen sensors in the exhaust that provide input to the engine control computer to adjust the fuel injection to achievestochiometric (no residual fuel or free oxygen in the exhaust) air-to-fuel ratio for any fuel mix. In newer models, the alcohol sensors have been removed, with the computer using only oxygen and airflow sensor feedback to estimate alcohol content. The engine control computer can also adjust (advance) the ignition timing to achieve a higher output without pre-ignition when it predicts that higher alcohol percentages are present in the fuel being burned. This method is backed up by advanced knock sensors – used in most high performance gasoline engines regardless of whether they are designed to use ethanol or not – that detect pre-ignition and detonation.

Other engine configurations

ED95 engines

Since 1989 there have also been ethanol engines based on the diesel principle operating in Sweden. They are used primarily in city buses, but also in distribution trucks and waste collectors. The engines, made by Scania, have a modified compression ratio, and the fuel (known as ED95) used is a mix of 93.6% ethanol and 3.6% ignition improver, and 2.8% denaturants. The ignition improver makes it possible for the fuel to ignite in the diesel combustion cycle. It is then also possible to use the energy efficiency of the diesel principle with ethanol. These engines have been used in the United Kingdom by Reading Transport but the use of bioethanol fuel is now being phased out.

Dual-fuel direct-injection

A 2004 MIT study and an earlier paper published by the Society of Automotive Engineers identified a method to exploit the characteristics of fuel ethanol substantially more efficiently than mixing it with gasoline. The method presents the possibility of leveraging the use of alcohol to achieve definite improvement over the cost-effectiveness of hybrid electric. The improvement consists of using dual-fuel direct-injection of pure alcohol (or the azeotrope or E85) and gasoline, in any ratio up to 100% of either, in a turbocharged, high compression-ratio, small-displacement engine having performance similar to an engine having twice the displacement. Each fuel is carried separately, with a much smaller tank for alcohol. The high-compression (for higher efficiency) engine runs on ordinary gasoline under low-power cruise conditions. Alcohol is directly injected into the cylinders (and the gasoline injection simultaneously reduced) only when necessary to suppress ‘knock’ such as when significantly accelerating. Direct cylinder injection raises the already high octane rating of ethanol up to an effective 130. The calculated over-all reduction of gasoline use and CO2 emission is 30%. The consumer cost payback time shows a 4:1 improvement over turbo-diesel and a 5:1 improvement over hybrid. The problems of water absorption into pre-mixed gasoline (causing phase separation), supply issues of multiple mix ratios and cold-weather starting are also avoided.

Increased thermal efficiency

In a 2008 study, complex engine controls and increased exhaust gas recirculation allowed a compression ratio of 19.5 with fuels ranging from neat ethanol to E50. Thermal efficiency up to approximately that for a diesel was achieved. This would result in the fuel economy of a neat ethanol vehicle to be about the same as one burning gasoline.

Fuel cells powered by an ethanol reformer

In June 2016, Nissan announced plans to develop fuel cell vehicles powered by ethanol rather than hydrogen, the fuel of choice by the other car manufacturers that have developed and commercialized fuel cell vehicles, such as the Hyundai Tucson FCEV, Toyota Mirai, and Honda FCX Clarity. The main advantage of this technical approach is that it would be cheaper and easier to deploy the fueling infrastructure than setting up the one required to deliver hydrogen at high pressures, as each hydrogen fueling station cost US$1 million to US$2 million to build.

Nissan plans to create a technology that uses liquid ethanol fuel as a source to generate hydrogen within the vehicle itself. The technology uses heat to reform ethanol into hydrogen to feed what is known as a solid oxide fuel cell (SOFC). The fuel cell generates electricity to supply power to the electric motor driving the wheels, through a battery that handles peak power demands and stores regenerated energy. The vehicle would include a tank for a blend of water and ethanol, which is fed into an onboard reformer that splits it into pure hydrogen and carbon dioxide. According to Nissan, the liquid fuel could be an ethanol-water blend at a 55:45 ratio. Nissan expects to commercialize its technology by 2020.

Motorsport

Leon Duray qualified third for the 1927 Indianapolis 500 auto race with an ethanol-fueled car. The IndyCar Series adopted a 10% ethanol blend for the 2006 season, and a 98% blend in 2007.

In drag racing, there are Top Alcohol classes for dragsters and funny cars since the 1970s.

The American Le Mans Series sports car championship introduced E10 in the 2007 season to replace pure gasoline. In the 2008 season, E85 was allowed in the GT class and teams began switching to it.

In 2011, the three national NASCAR stock car series mandated a switch from gasoline to E15, a blend of Sunoco GTX unleaded racing fuel and 15% ethanol.

Australia's V8 Supercar championship uses United E85 for its racing fuel.

Stock Car Brasil Championship runs on neat ethanol, E100.

Ethanol fuel may also be utilized as a rocket fuel. As of 2010, small quantities of ethanol are used in lightweight rocket-racing aircraft.

published by Gauk